Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore.

نویسندگان

  • Dong-Huei Lin
  • Chih-Yuan Lin
  • Shiojenn Tseng
  • Jyh-Ping Hsu
چکیده

The ionic current rectification (ICR) is studied theoretically by considering a pH-regulated, conical nanopore. In particular, the effect of electroosmotic flow (EOF), which was often neglected in previous studies, is investigated by solving a set of coupled Poisson, Nernst-Planck, and Navier-Stokes equations. The behaviors of ICR under various conditions are examined by varying solution pH, bulk ionic concentration, and applied electric potential bias. We show that the EOF effect is significant when the bulk ionic concentration is medium high, the pH is far away from the iso-electric point, and the electric potential bias is high. The percentage deviation in the current rectification ratio arising from neglecting the EOF effect can be on the order of 100%. In addition, the behavior of the current rectification ratio at a high pH taking account of EOF is different both qualitatively and quantitatively from that without taking account of EOF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes

Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive mod...

متن کامل

Simulation of ionic current through the nanopore in a double-layered semiconductor membrane.

We study the effects of different nanopore geometries (double-conical, single-conical, cylindrical) on the electrostatic potential distribution and ionic conductivity in a double-layered semiconductor nanopore device as functions of the applied membrane bias. Ionic current-voltage characteristics as well as their rectification ratios are calculated using a simple ion transport model. Based on o...

متن کامل

Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be obser...

متن کامل

Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.

Ion transport through nanopores is an important process in nature and has important engineering applications. To date, most studies of nanopore ion transport have been carried out with electrolytes of relatively low concentrations. In this paper, we report on ionic current modulation from the translocation of dsDNA through a nanopore under high ionic strength and with an electrolyte concentrati...

متن کامل

Current voltage curves in synthetic conical nanopores described by a simple Poisson / Nernst Planck model

We have developed a theoretical model [1] for ionic transport through synthetic conical nanopores. The results have been compared with experiments obtained for single, gold–coated conical nanopores. The model [1] describes quantitatively the ionic transport through synthetic conical nanopores. It is based on the Poisson and Nernst-Planck (PNP) equations and allows the calculation of realistic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 33  شماره 

صفحات  -

تاریخ انتشار 2015